QUANTUM HARDWARE PLATFORMS

A BRIEF OVERVIEW

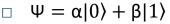
David Shaw, Fact Based Insight

Quantum Business Europe March 2021

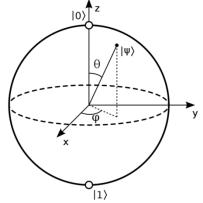
Quantum hardware roadmaps are hard to directly compare

Platform	Player	2020	2021	2022	2023	2024	2025 to 2030	
Superconducting	Google	53Q	100Q		10 ³ Q		10 ⁴ Q - 10 ⁴ Q - 1MQ	
Superconducting	IBM	65Q	127Q	433Q	1121Q		path to 1MQ	
Superconducting	Rigetti	32Q	4x32Q					
Trapped Ion	Honeywell	H1		H2	F	13	H4 H5	
Trapped Ion	lonQ	22AQ		29AQ		256AQ	1024AQ	
Neutral Atom	ColdQuanta		100Q	300Q		1000Q		
Silicon	CEA Leti		6Q		100Q			
Silicon	SQC			10Q				100Q
Photonic	QuiX		12Qm	50Qm				
Photonic	PsiQ						1MQ	
Photonic	Xanadu	X24	X40	X80	XD80		1MQ	

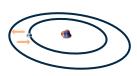
Source: Fact Based Insight


Qubits – a key building block for quantum hardware

Quantum systems ...


- Natural two-state systems
 - Electron spin up & spin down
 - Photon polarisation

A qubit


- α and β are complex numbers,
- normalised $|\alpha|^2 + |\beta|^2 = 1$ i.e. probabilities sum to 100%

- x
- Quantum gates drive Ψ around the sphere
- Qubit plus a universal set of gates are sufficient for all quantum computing

□ Systems with discrete states

- Atoms or ions
- "Artificial atoms"
 - e.g. defect-centres
- □ Engineered quantum systems...
 - Current excitations in a superconducting circuit loop

FACT BASED INSIGHT

A simplified quantum stack

07

06

05

04

03

02

01

CONTROL LOGIC

Pulse & timing calibration Optimal Control Decoding

CONTROL PLANE

Crosstalk Wiring/integration Heat management

QUANTUM PLANE

Fidelity Native gates Connectivity Interconnects

SIMULATOR

Verification & validation Performance

Applications Algorithms Framework Architecture Control Logic **Control Plane** Quantum Plane

APPLICATIONS

Development mgt. Workflow mgt.

ALGORITHMS

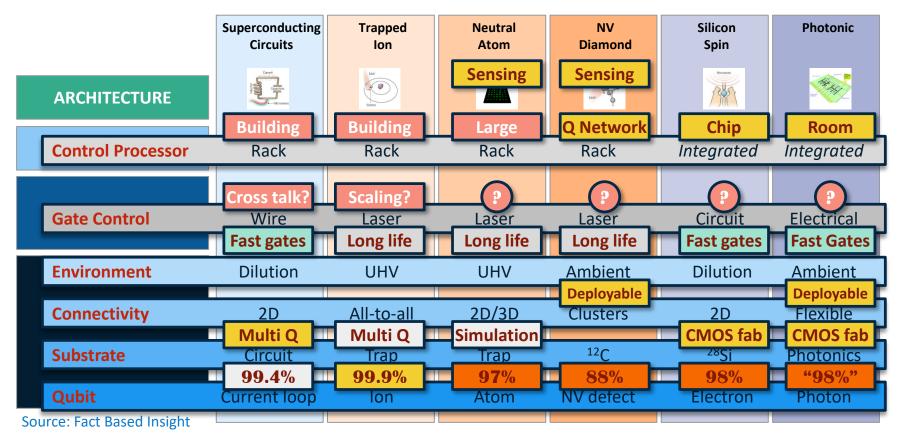
Languages

Libraries

FRAMEWORK

Circuits Optimising compilers

ARCHITECTURE


QPU kernel Quantum error correction Magic state factories QRAM

Challenges of scaling-up the quantum hardware stack

	Challenge	Indicator/metric
ARCHITECTURE	Quantum error correction	Threshold; Cycle time Magic state factory footprint
CONTROL LOGIC	Calibration & optimal controlHeat management	Quantum volume 20mK vs 200mK vs 2K
CONTROL PLANE	Control wiring/alignmentCross talk	Integration strategy Simultaneous2Q gate fidelity
QUANTUM PLANE	 Modules size/interconnects Connectivity Native gate set High fidelity gates State preparation & measurement Long lifetime (T1, T2) 	Interconnect speed Error correction base cell Universal gate set 2Q gate fidelity (99%+, ideally 99.99 Mid-circuit feedback Lifetime/gate speed

Source: Fact Based Insight

Old high level comparison of qubit technologies

Established players plus thriving startups and innovation

Quantum SQC Rigetti Cold-**D-Wave** Benchmark **ARCHITECTURE** lonQ IBM PsiQ QuiX Q-CTRL **Orange QS** OriginQ Google Honey-Xanadu Seegc Zurich **QBlox** Quantum well **CONTROL LOGIC** AQT Machines Instrumenf Bluefors Universal QCI IQM QDevil Quantum Oxford OQC **CONTROL PLANE** Delft Oxford Instru-Circuits lonics ments Orca Oilimanjaro Pasgal Duality Quantum **QUANTUM PLANE** QuEra Motion Quantum Atom Brilliance Bleximo Alice AWS Archer **EeroQ** & Bob Source: Fact Based Insight

Established Roadmap

Startup/Innovation

Increasingly, variations of qubit technology are important

	Catio	Superconducting Circuits	Trapped Ion	Neutral Atom	NV Diamond	Silicon Spin	Photonic
	Error Correction		Bacon-Shor cor Surface code	Surface code		Surface code	Beyond foliat ! GKP code
	Control Processor	CryoCMOS SFQ	Rack	Rack	Mounted	Monolithic	Flipchip
	Gate Control	Freq. tuning M 99.85% Tunable couplers	Laser Q NF Microwave GF Microwave		Laser	CMOS fab STM fab	Electrical
	Environment	20mK	UHV	UHV	Ambient	200mK?	2K (detector)
	Connectivity	Square grid Hex grid	All-to-all Shuttling	2D+	Clusters	2D	Flexible
	Substrate	Circuit	RF trap	MOT trap	¹² C	²⁸ Si	Photonics
Sou	Qubit	Tunable Fr QS Fixed Freq.	Hyperfine Optical	Hyperfine Optical	NV SiV	Qdot Donor	Single Photor Squeezed Light

Superconducting circuits – a challenge of fidelity and scaling

Notable variations	USP	Key Challenge	Notable Players	Leading device 2020	Announced For 2021
99.7 Tunable qubits	7% Fast gates	Scaling-up	Google, OriginQ, QuTech, IQM, Seeqc,	53Q QS	100Q
99.8 Fixed-frequency	5% Longer qubit lifetime	Integrating tunable couplers	IBM, OQC	27Q (QV 128)	128Q
99 Parametric gates	<mark>%</mark> Hybrid benefits	2Q gate fidelities	Rigetti, Bleximo,	32Q	4x32Q

5000Q	D-Wave, Qilimanjaro	Demonstrating quantum advantage	Rapid scale-up for quantum annealing	Flux qubits
-------	------------------------	------------------------------------	--------------------------------------	-------------

Source: Fact Based Insight

Trapped ions – very different approaches

Notable variations	USP	Key Challenge	Notable Players	Leading device 2020	Announced For 2021
Hyperfine qubits with laser gates	.9% Highest fidelity .6%	Scaling-up laser control system	lonQ, Honeywell	2QV 10Q (QV 128)	32Q (QV 4millon)
Optical qubits with laser gates	Easier optical integration	Mitigating shorter qubit lifetime	AQT, NextGenQ	20Q	50Q
Hyperfine qubits 99 with near-field microwave gates	.7% High fidelity without lasers	Demonstrate multi- qubit device	Oxford Ionics	2Q	
Dressed states with global-field microwave gates	Very modular and scalable	2Q gate fidelities	Universal, NextGenQ	2Q	

	Superconducting Circuits	Trapped Ions	Neutral Atoms	NV Diamond	Silicon Spin	Photonic
Important Variants	Tunable, Fixed Freq., Parametric	Hyperfine, Optical, NF Microwave, GF Microwave	Hyperfine, Optical	Nitrogen Vacancy, Silicon Vacancy	Quantum Dots, Imp. Donor, STM-Fab. Door	MBQC, CVQC
Qubit T2 Lifetimes	Short 15-120µs	Long 0.2-50s	Long 0.2-50s	Long 10s	Mixed 1µs-0.5s	Short 150μs
2Q Gate Fidelity	High 99%-99.85%	High 99%-99.9%	Promising 97%	Interesting 99% (88%)	Promising 98%	Promising 98%
Gate Speeds	Fast 12-200ns	Mixed 1µs-3ms	Intermediate 1µs	Slow 100µs	Fast 0.8-80ns	Very Fast 1ns
Lifetime/ Speed	1250-100	1000000-500	1000000-100000	c.100000	10-50	c.150000
Environment	20mK	Ultra High Vacuum	Ultra High Vacuum	Ambient	20mK - 1K	1K - 10K (detectors)
Current Devices	65Q	20Q	51Q	10Q	2Q	12Q
Announced Devices for 2021	100Q 128Q	32Q 50Q	100Q	10Q	6Q	24Q 40Q-80Q
FTQC Footprint	Building	Building	Large	Network	Chip	Compact

Source: Fact Based Insight

1s = 1000ms = 1000,000µs = 1000,000,000ns

For more information and supporting references

- □ <u>Factbasedinsight.com/quantum-hardware-outlook-2021</u>
- **<u>Factbasedinsight.com/quantum-hardware-into-the-quantum-jungle</u>**